Small-Scale Wind Power Generator with Inverse Taper and Taper Type Blades at Low Wind Speed

  • Authors

  • Affiliations

  • Published

  • Section Articles

  • DOI https://doi.org/10.56347/jes.v4i1.275

  • Issue
Views icon

0

Views

Downloads icon

0

Downloads

Altmetrics icon

Altmetrics

Abstract

The utilization of wind energy as one of the renewable energy sources in Indonesia is still limited. This is due to Indonesia's large wind potential, but it is at low speeds. One modification of wind turbines to overcome this problem is by using inverse taper and taper blades. Inverse taper blades have a chord distribution that increases from root to tip while taper blades have a chord distribution that decreases from root to tip. This research conducts the design and construction of inverse taper and taper blades on small-scale wind turbines using NACA 6412 airfoil type, then tested in the field and obtained the performance of each blade. The design was carried out using blade element momentum theory to obtain the blade geometry shape and perform performance analysis of each type of blade. Based on the simulation results obtained from QBlade, it shows that the inverse taper blade performance has a maximum Cp of 0.52 while the taper blade has a maximum Cp of 0.41. The power graph from field testing results shows that inverse taper blades provide good power generation at low wind speeds compared to taper blades. The inverse taper blade has a cut-in speed of 1.2 m/s and the best power production occurs at speeds of 1-4 m/s.

References

  1. Abdillah, M. H., Erfianto, B., & Wijiutomo, C. W. (2015). Sistem monitoring secara real-time penyimpanan energi listrik dari wind turbine lentera angin nusantara (LAN). e-Proceeding of Engineering, 2(2), 6387–6394.
  2. Arifianto, I., & Hs, M. R. (2018). Analisa efisiensi dan rancang generator permanent magnet 12 slot 8 pole menggunakan software magnet 7.5. Seminar Nasional Microwave, Antena dan Propagasi, 43–48.
  3. Betz, A. (2013). The maximum of the theoretically possible exploitation of wind by means of a wind motor. Wind Engineering, 37(4), 441–446. https://doi.org/10.1260/0309-524X.37.4.441
  4. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2nd ed.). John Wiley & Sons.
  5. Culp, A. W. (1996). Prinsip-prinsip konversi energi. Erlangga.
  6. Eriksson, S., Bernhoff, H., & Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, 12(5), 1419–1434. https://doi.org/10.1016/j.rser.2006.05.017
  7. Fox, S. (2013). How does depth of discharge factor into grid connected battery systems? Solar Power World Magazine.
  8. Ginting, D. (2007). Sistem energi angin skala kecil untuk pedesaan. Jurnal Ilmiah Teknologi Energi, 1(5), 41–48.
  9. Gomez-leon, J. (2016). Wind turbine blade analysis using blade element momentum theory. International Journal of Engineering Research and Applications, 6(5), 1–10.
  10. Handoko, A. D. (2019). Pengembangan bilah turbin angin jenis semi-inversed taper untuk angin berkecepatan rendah [Undergraduate thesis]. Institut Teknologi Sepuluh Nopember.
  11. Haris, A. N. H. (2019). Rancang bangun sudu turbin angin tipe inverse taper pada turbin angin skala kecil [Undergraduate thesis]. Institut Teknologi Sepuluh Nopember.
  12. Hasan, M. M. (2017). Design and performance analysis of small scale horizontal axis wind turbine for nano grid application [Master's thesis]. Islamic University of Technology.
  13. Hasanin, M. K. M. M. (2017). The effect of blade geometry and configuration on horizontal axis wind turbine performance [Doctoral dissertation]. Cairo University.
  14. Hau, E. (2013). Wind turbines: Fundamentals, technologies, application, economics (3rd ed.). Springer.
  15. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). Wind energy explained: Theory, design and application (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119994367
  16. Marten, D. (2015). QBlade guidelines - v0.9. Technical University of Berlin.
  17. Mulyadi, M. (2014). Analisis aerodinamika pada sayap pesawat terbang dengan menggunakan software berbasis computational fluid dynamics (CFD). Jurnal Teknik Mesin, 3(2), 1–13.
  18. Nishizawa, Y. (2011). An experimental study of the shapes of rotor for horizontal-axis small wind turbines [Doctoral dissertation]. Kyushu University.
  19. Piggott, H. (1997). Windpower workshop: Building your own wind turbine. Centre for Alternative Technology Publications.
  20. Pristiandaru, D. L. (2016). Pengaruh penambahan lensa nozzle dan jumlah blade airfoil tipe NACA 4415 terhadap hasil daya listrik turbin angin sumbu horizontal. Jurnal Teknik Mesin, 4(1), 1–6.
  21. Ragheb, M. (2017). Wind energy engineering: A handbook for onshore and offshore wind turbines. In Wind Energy Engineering (pp. 537–554). Academic Press.
  22. Saoke, C. O. (2015). Power performance of an inversely tapered wind rotor and its air flow visualization analysis using particle image velocimetry (PIV). American Journal of Physics and Applications, 3(1), 6–12. https://doi.org/10.11648/j.ajpa.20150301.12
  23. Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, 5(9), 3425–3449. https://doi.org/10.3390/en5093425
  24. Strong, S. J. (2008). Design of a small wind turbine [Undergraduate thesis]. University of Southern Queensland.
  25. Timmer, W. A., & Van Rooij, R. P. J. O. M. (2003). Summary of the Delft University wind turbine dedicated airfoils. In ASME 2003 Wind Energy Symposium (pp. 248–255). https://doi.org/10.1115/wind2003-352
  26. Zahra, I. N. (2008). Pengenalan teknologi pemanfaatan energi angin. Jurnal Teknologi Lingkungan, 1(1), 1–4.

Author Biographies

How to Cite

Lubis, R. S., Muhayatsyah, T., Syukri, M., Siregar, R. H., & Jalil, S. M. (2025). Small-Scale Wind Power Generator with Inverse Taper and Taper Type Blades at Low Wind Speed. Journal of Engineering and Science, 4(1), 27-47. https://doi.org/10.56347/jes.v4i1.275

Article Details

  • Volume: 4
  • Issue: 1
  • Pages: 27-47
  • Published:
  • Section: Articles
  • Copyright: 2025
  • ISSN: 2828-805X

License

Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY 4.0). This means that users may share and adapt the articles published on this website in a reasonable manner, but they must give appropriate credit to the creator and indicate the changes they have made. Users must not apply additional restrictions, but must publish the work under the same license (CC-BY 4.0).

Article Statistics

  • Submitted:
  • Published:
  • Views: 0
  • Downloads: 0
Similar Articles

Similar Articles

Discover other articles with topics similar to what you're currently reading. Find more references and expand your knowledge base.

Related Articles You May Be Interested In

More Similar Articles

Analisis Ketidakstabilan Beban Arus Netral dan Rugi-Rugi...

Suriadi, Ira Devi Sara, Ahmad Syuhada, Masri, Asri, Khairul Umurani

Vol. 2 No. 2 (2023): July-December 2023
Sistem Analisis Desain Pembangkit Listrik Tenaga Surya...

Elvy Sahnur Nasution, Suriadi, Azhar

Vol. 1 No. 1 (2022): January-June 2022
Perbandingan Daya Output Panel Surya Rooftop Berdasarkan...

Syukriyadin, Ira Devi Sara, Syahrizal, Muamar Kadafi

Vol. 1 No. 2 (2022): July-December 2022
Kegagalan Permukaan Kontak Rail dan Wheel pada Overhead...

Azhar, Ajinar, Zainuddin

Vol. 1 No. 1 (2022): January-June 2022
Most read articles by the same author(s)

Related Articles

Article

Optimalisasi Performa Sistem Tegangan dengan...

Journal of Engineering and Science: Vol. 2 No. 1 (2023): January-June 2023

Mahdi Syukri, Suriadi, Ira Devi Sara, Ramdhan Halid Siregar, Muhibbuddin, Masri