Analysis of Deep Learning Method Development for Performance Optimization of Complex Data Classification Models

Views

0

Views

Downloads

0

Downloads

Altmetrics

Altmetrics

Abstract

This study aims to analyze the development of deep learning methods for optimizing complex data classification model performance through a Systematic Literature Review (SLR) approach examining 25 Scopus-indexed scientific articles published between 2024 and 2025. The analysis employs bibliometric techniques using VOSviewer to map keyword networks, temporal trends, and term density patterns. Visualization results identify three primary clusters: (1) LSTM-based classification and intrusion detection systems in cybersecurity applications; (2) CNN optimization and model efficiency for medical imaging and satellite image classification; and (3) artificial intelligence integration with visual classification and evolutionary optimization algorithms. Recent trends demonstrate the dominance of keywords such as "optimization," "effectiveness," and "feature selection," alongside growing interest in hybrid approaches and metaheuristic algorithms. This research provides a comprehensive overview of methodological transformations and application directions of deep learning in complex data classification domains. These findings are expected to serve as strategic references for advancing research and applications in big data-driven artificial intelligence technologies.

References

  • Alamgeer, M., Al Mazroa, A., Alotaibi, S. S., Alanazi, M. H., Alonazi, M., & Salama, A. S. (2024). Improving remote sensing scene classification using dung beetle optimization with enhanced deep learning approach. Heliyon, 10(18), e37154. https://doi.org/10.1016/j.heliyon.2024.e37154
  • Alamri, A., Abdel-Khalek, S., Bahaddad, A. A., & Alghamdi, A. M. (2025). Innovative deep learning and quantum entropy techniques for brain tumor MRI image edge detection and classification model. Alexandria Engineering Journal, 122, 588–604. https://doi.org/10.1016/j.aej.2025.03.038
  • Alhayan, F., Alruwais, N., Alamgeer, M., Alashjaee, A. M., Abdullah, M., Khadidos, A. O., Alallah, F. S., & Alshareef, A. (2025). Design of advanced intrusion detection in cybersecurity using ensemble of deep learning models with an improved beluga whale optimization algorithm. Alexandria Engineering Journal, 121, 90–102. https://doi.org/10.1016/j.aej.2025.02.069
  • Alhayan, F., Saeed, M. K., Allafi, R., Abdullah, M., Subahi, A., Alghanmi, N. A., & Alkhudhayr, H. (2025). Hybrid deep learning models with spotted hyena optimization for cloud computing enabled intrusion detection system. Journal of Radiation Research and Applied Sciences, 18(2), 101523. https://doi.org/10.1016/j.jrras.2025.101523
  • Alkhalifa, A. K., Saeed, M. K., Othman, K. M., Ebad, S. A., Alonazi, M., & Mohamed, A. (2024). Prairie dog optimization algorithm with deep learning assisted based aerial image classification on UAV imagery. Heliyon, 10(18), e37446. https://doi.org/10.1016/j.heliyon.2024.e37446
  • Alkhonaini, M. A., Alohali, M. A., Aljebreen, M., Eltahir, M. M., Alanazi, M. H., Yafoz, A., Alsini, R., & Khadidos, A. O. (2025). Sandpiper optimization with hybrid deep learning model for blockchain-assisted intrusion detection in IoT environment. Alexandria Engineering Journal, 112, 49–62. https://doi.org/10.1016/j.aej.2024.10.032
  • Al-Mahdi, I. S., Darwish, S. M., & Madbouly, M. M. (2025). Heart disease prediction model using feature selection and ensemble deep learning with optimized weight. Computer Modeling in Engineering and Sciences, 143(1), 875–909. https://doi.org/10.32604/cmes.2025.061623
  • Alzaidi, M. S. A., Alshammari, A., Hassan, A. Q. A., Ebad, S. A., Al Sultan, H., Alliheedi, M. A., Aljubailan, A. A., & Alzahrani, K. A. (2025). Enhanced automated text categorization via Aquila optimizer with deep learning for Arabic news articles. Ain Shams Engineering Journal, 16(1), 103189. https://doi.org/10.1016/j.asej.2024.103189
  • Antony, A., & Geetha Kumar, R. (2024). Enhancing food crop classification in agriculture through dipper throat optimization and deep learning with remote sensing. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 9, 100732. https://doi.org/10.1016/j.prime.2024.100732
  • Assiri, M. S., & Selim, M. M. (2025). A swin transformer-driven framework for gesture recognition to assist hearing impaired people by integrating deep learning with secretary bird optimization algorithm. Ain Shams Engineering Journal, 16(6), 103383. https://doi.org/10.1016/j.asej.2025.103383
  • Benmalek, M., & Seddiki, A. (2025). Particle swarm optimization-enhanced machine learning and deep learning techniques for Internet of Things intrusion detection. Data Science and Management. https://doi.org/10.1016/j.dsm.2025.02.005
  • Bouakkaz, H., Bouakkaz, M., Kerrache, C. A., & Dhelim, S. (2025). Enhanced classification of medicinal plants using deep learning and optimized CNN architectures. Heliyon, 11(3), e42385. https://doi.org/10.1016/j.heliyon.2025.e42385
  • Dai, L. (2024). Performance analysis of deep learning-based electric load forecasting model with particle swarm optimization. Heliyon, 10(16), e35273. https://doi.org/10.1016/j.heliyon.2024.e35273
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 4171-4186). Association for Computational Linguistics.
  • Farhat, W., Ben Rhaiem, O., Faiedh, H., & Souani, C. (2025). Optimized deep learning for pedestrian safety in autonomous vehicles. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2025.04.002
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Hassan, M., Salbitani, G., Carfagna, S., & Khan, J. A. (2025). Deep learning meets marine biology: Optimized fused features and LIME-driven insights for automated plankton classification. Computers in Biology and Medicine, 192, 110273. https://doi.org/10.1016/j.compbiomed.2025.110273
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Khosravi, K., Mosallanejad, A., Bateni, S. M., Kim, D., Jun, C., Shahvaran, A. R., Farooque, A. A., Karbasi, M., & Ali, M. (2025). Assessing Pan-Canada wildfire susceptibility by integrating satellite data with novel hybrid deep learning and black widow optimizer algorithms. Science of the Total Environment, 977, 179369. https://doi.org/10.1016/j.scitotenv.2025.179369
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (Vol. 25, pp. 1097-1105). Neural Information Processing Systems Foundation.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, F. F., Li, G. X., Yu, X. X., Zhang, Z. H., Fu, Y. N., Wu, S. Q., Wang, Y., Xiao, C., Ye, Y. F., Hu, M., & Dai, Q. (2025). Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study. Computer Methods and Programs in Biomedicine, 250, 108814. https://doi.org/10.1016/j.cmpb.2025.108814
  • Mohseni-Gharyehsafa, B., Hussain, S., Fahy, A., de Rosa, M., & Pallonetto, F. (2025). A hybrid Gaussian process-integrated deep learning model for retrofitted building energy optimization in smart city ecosystems. Applied Energy, 388, 125643. https://doi.org/10.1016/j.apenergy.2025.125643
  • Muduli, D., Parija, S., Kumari, S., Hassan, A., Jangwan, H. S., Zamani, A. T., Gouse, Sk. M., Majhi, B., & Parveen, N. (2025). Deep learning-based detection and classification of acute lymphoblastic leukemia with explainable AI techniques. Array, 26, 100397. https://doi.org/10.1016/j.array.2025.100397
  • Muduli, D., Yaqoob, S. I., Sharma, S. K., Kanade, A. S., Shameem, M., Jangwan, H. S., Kumar, P. M. A., & Zamani, A. T. (2025). Cloud-based optimized deep learning framework for automated glaucoma detection using stationary wavelet transform and improved grey-wolf-optimization with ELM approach. Results in Engineering, 26, 104682. https://doi.org/10.1016/j.rineng.2025.104682
  • Nehzati, M. (2025). Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks. Memories - Materials, Devices, Circuits and Systems, 9, 100126. https://doi.org/10.1016/j.memori.2025.100126
  • Thanga Purni, J. S., & Vedhapriyavadhana, R. (2024). EOSA-Net: A deep learning framework for enhanced multi-class skin cancer classification using optimized convolutional neural networks. Journal of King Saud University - Computer and Information Sciences, 36(3), 102007. https://doi.org/10.1016/j.jksuci.2024.102007
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (Vol. 30, pp. 5998-6008). Neural Information Processing Systems Foundation.
  • Wei, M., & Du, X. (2025). Apply a deep learning hybrid model optimized by an improved chimp optimization algorithm in PM2.5 prediction. Machine Learning with Applications, 19, 100624. https://doi.org/10.1016/j.mlwa.2025.100624
  • Zhang, X., Li, Y., Wang, H., Chen, M., Liu, J., & Wu, S. (2021). Hybrid deep learning models for classification of medical images. IEEE Access, 9, 105102–105115. https://doi.org/10.1109/ACCESS.2021.3099876
  • Zhang, X., Wang, Q., Wu, C., & Liu, Y. (2024). Construction and optimization of traditional Chinese medicine constitution prediction models based on deep learning. Digital Chinese Medicine, 7(3), 241–255. https://doi.org/10.1016/j.dcmed.2024.12.004
  • Zheng, F. (2025). Improving English vocabulary learning with a hybrid deep learning model optimized by enhanced search algorithm. Egyptian Informatics Journal, 29, 100619. https://doi.org/10.1016/j.eij.2025.100619.

Author Biographies

Dimas Banu Dwi Hanggoro

Universitas Nusa Mandiri

Universitas Nusa Mandiri, Central Jakarta City, Special Capital Region of Jakarta, Indonesia

How to Cite

Hanggoro, D. B. D. (2025). Analysis of Deep Learning Method Development for Performance Optimization of Complex Data Classification Models. Journal Innovations Computer Science, 4(1), 49-59. https://doi.org/10.56347/jics.v4i1.242

Article Details

  • Volume: 4
  • Issue: 1
  • Pages: 49-59
  • Published: 2025-05-30
  • Section: Article
Similar Articles

Similar Articles

Discover other articles with topics similar to what you're currently reading. Find more references and expand your knowledge base.

Related Articles You May Be Interested In

More Similar Articles

Perancangan Aplikasi Visualisasi Database Produksi dengan...

Yusuf Darmanto, Lucky Koryanto, NM Faizah

Vol. 2 No. 2 (2023): November 2023
Analisis Prediksi Pemilihan Mata Kuliah Peminatan pada...

Abel Destria, Anna Nurlita, Terttiaavini

Vol. 2 No. 1 (2023): May 2023
Sistem Informasi Pendataan Karyawan pada PT. Waskita...

Mhd Septian Kriswanto, Harry Idwan, Syafrinal

Vol. 2 No. 1 (2023): May 2023
Perancangan Sistem Informasi Penjualan Tanaman Hias pada...

Bagus Sarul Setia, Banta Cut, Juniana Husna

Vol. 2 No. 1 (2023): May 2023
Most read articles by the same author(s)

Related Articles