Abstract
Market segmentation represents a critical challenge in local product marketing, particularly when addressing complex consumer behavior patterns and uncertain classification environments in today's digital economy. This research develops and validates a hybrid model integrating K-Means Clustering with Dempster-Shafer theory to enhance segmentation accuracy and reliability for local product markets. The K-Means algorithm groups consumers based on demographic, psychographic, and behavioral characteristics, while Dempster-Shafer theory quantifies uncertainty and provides confidence measures for segment assignments. Data collection involved comprehensive consumer surveys and transaction records from 2,847 participants across multiple local product categories over a 12-month period. The hybrid model achieved superior performance with 87.5% accuracy, 85.3% precision, 86.1% recall, and 85.7% F1-score, representing improvements of 5.4% over standard K-Means and 8.2% over hierarchical clustering methods. Four distinct market segments were identified: Young Urban Professionals (28%), Value-Conscious Families (35%), Traditional Loyalists (22%), and Digital Natives (15%), each exhibiting unique purchasing patterns, digital engagement levels, and price sensitivity characteristics. Cross-validation yielded a consistency score of 0.91 with segment stability demonstrated through 8.3% churn rate and conflict measure K = 0.12, indicating substantial agreement among evidence sources. The methodology successfully addresses uncertainty in consumer classification while providing actionable insights for targeted marketing strategies, pricing optimization, and customer retention programs. Local product marketers can implement this framework to develop evidence-based marketing approaches that accommodate both traditional and digital consumer preferences, enabling competitive positioning in increasingly complex market environments. The research establishes a scalable and practical solution for small to medium enterprises seeking sophisticated market analysis capabilities without requiring extensive computational infrastructure or technical expertise.
References
-
Aaqib, M., Ali, A., Chen, L., & Nibouche, O. (2025). Behaviour-based trust assessment for the Internet of Things systems using multi-classifier ensemble learning and Dempster–Shafer fusion. Neural Computing and Applications, 1-24. https://doi.org/10.1007/s00521-025-11273-8
-
Afkar, M. A., & Yusmaneli. (2023). Model bisnis TikTok Shop dan implikasinya terhadap ekonomi digital di Indonesia. Journal of Law and Economics, 2(1), 41-51. https://doi.org/10.56347/jle.v2i1.180
-
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. https://doi.org/10.3390/electronics9081295
-
Aldjawad, M., Andryana, S., & Andrianingsih, A. (2021). Penerapan metode perbandingan Dempster-Shafer dengan certainty factor pada aplikasi sistem pakar deteksi dini penyakit Alzheimer pada lansia berbasis web. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 5(2), 144–152. https://doi.org/10.35870/jtik.v5i2.206
-
Aryasatya, R., & Lusiana, V. (2024). Penentuan klustering indeks pembangunan manusia Provinsi Jawa Tengah dengan metode K-means berbasis web. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 8(1), 155–162. https://doi.org/10.35870/jtik.v8i1.1403
-
Azis, A., & Sutisna. (2024). Penerapan data mining untuk menentukan ketersediaan stok barang berdasarkan permintaan konsumen di PT Indonesia Thai Summit Plastech menggunakan K-means clustering. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(3), 3099-3106. https://doi.org/10.35870/jimik.v5i3.982
-
Basir, O., Karray, F., & Zhu, H. (2005). Connectionist-based Dempster-Shafer evidential reasoning for data fusion. IEEE Transactions on Neural Networks, 16(6), 1513-1530. https://doi.org/10.1109/TNN.2005.853337
-
Ding, C., Liu, C., Chui-yong, Z., & Li, F. (2022). Digital economy, technological innovation and high-quality economic development: Based on spatial effect and mediation effect. Sustainability, 14(1), 216. https://doi.org/10.3390/su14010216
-
Du, Y. W., & Zhong, J. J. (2021). Generalized combination rule for evidential reasoning approach and Dempster–Shafer theory of evidence. Information Sciences, 547, 1201-1232. https://doi.org/10.1016/j.ins.2020.07.072
-
Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. Advances in Neural Information Processing Systems, 16.
-
Krishna, K., & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433-439. https://doi.org/10.1109/3477.764879
-
Kumar, M. R., Vishnu, S., Roshen, G., Kumar, D. N., Revathi, P., & Baster, D. R. L. (2024, February). Product recommendation using collaborative filtering and k-means clustering. In 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT) (Vol. 5, pp. 1722-1728). IEEE. https://doi.org/10.1109/IC2PCT60090.2024.10486625
-
Nazaruddin, E., Caroline, Andrijanni, & Sulistyawati, U. S. (2023). Analyzing customers in e-commerce using Dempster-Shafer method. International Journal Software Engineering and Computer Science (IJSECS), 3(2), 174–183. https://doi.org/10.35870/ijsecs.v3i2.1497
-
Ningrum, A. V. F. F., Anshori, M., & Pradini, R. S. (2025). Klasterisasi peserta KB aktif di Desa Kalirejo Lawang menggunakan metode K-means. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 6(1), 729-741. https://doi.org/10.35870/jimik.v6i1.1273
-
Obilo, O., & Alford, B. (2018). Market segmentation via attitudinal functions: A multi-method approach. Qualitative Market Research: An International Journal, 21(1), 63-81. https://doi.org/10.1108/qmr-06-2016-0052
-
Pratistha, R. N., & Kristianto, B. (2024). Implementasi algoritma K-means dalam klasterisasi kasus stunting pada balita di Desa Randudongkal. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(2), 1193-1205. https://doi.org/10.35870/jimik.v5i2.634
-
Putra, W. E., Fikry, M., Yusra, Yanto, F., & Cynthia, E. P. (2025). Klasifikasi sentimen masyarakat di Twitter terhadap Puan Maharani dengan metode modified K-nearest neighbor. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 6(1), 457-467. https://doi.org/10.35870/jimik.v6i1.1211
-
Raihan, F., & Sutisna. (2024). Analisis pengaruh media sosial X terhadap sikap dan perilaku remaja menggunakan K-means clustering. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(3), 3138-3146. https://doi.org/10.35870/jimik.v5i3.991
-
Rombaut, M., & Zhu, Y. M. (2002). Study of Dempster–Shafer theory for image segmentation applications. Image and Vision Computing, 20(1), 15-23. https://doi.org/10.1016/S0262-8856(01)00070-1
-
Sapdana, J., & Henryanto, Y. (2022). Implementation expert system for diagnosing tuberculosis using Dempster-Shafer method. International Journal Software Engineering and Computer Science (IJSECS), 2(1), 26–32. https://doi.org/10.35870/ijsecs.v2i1.763
-
Sarimole, F. M., & Septiansyah, M. A. (2024). Analisis pola kinerja anak dalam tes membaca untuk mengidentifikasi anak yang membutuhkan pendampingan dini menggunakan algoritma K-means clustering di PAUD Seroja. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(3), 3054-3064. https://doi.org/10.35870/jimik.v5i3.1010
-
Shafer, G. (1992). Dempster-Shafer theory. In Encyclopedia of artificial intelligence (Vol. 1, pp. 330-331).
-
Shoyaib, M., Abdullah-Al-Wadud, M., & Chae, O. (2012). A skin detection approach based on the Dempster–Shafer theory of evidence. International Journal of Approximate Reasoning, 53(4), 636-659. https://doi.org/10.1016/j.ijar.2012.01.003
-
Syahputra, A., Wiranti, R., & Astita, W. A. (2022). Peran sistem informasi manajemen organisasi dalam pengambilan keputusan. Jurnal Manajemen Sistem Informasi (JMASIF), 1(1), 26-31. https://doi.org/10.35870/jmasif.v1i1.67
-
Syani, M., Tundo, Sugiyono, & Wahyudi, T. (2024). Klasterisasi penggunaan ban dengan cost per kilometer terendah pada PT. PL menggunakan metode K-means. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(3), 2792-2800. https://doi.org/10.35870/jimik.v5i3.1005
-
Tahsin, M., & Azzahra, P. L. (2024). Penerapan kecerdasan buatan untuk meningkatkan pembelajaran desain logo dalam industri kreatif. Design Journal, 2(1), 23-32. https://doi.org/10.58477/dj.v2i1.163
-
Tiwow, G., Rawis, J., Lengkong, J., & Rotty, V. (2023). Strengthening the acceleration of digital transformation in developing a digital economy curriculum. IJITE, 2(3), 108-117. https://doi.org/10.62711/ijite.v2i3.130
-
Wang, L., & Wang, D. (2023). Analysis of the advantages of the digital economy and innovative development. Information Systems and Economics, 4(9). https://doi.org/10.23977/infse.2023.040919
-
Xia, Y. (2024). The impact of the development of the digital economy on the development of the real economy. Highlights in Business Economics and Management, 28, 428-433. https://doi.org/10.54097/0vbvx032
-
Yu, K., Lin, T. R., & Tan, J. (2020). A bearing fault and severity diagnostic technique using adaptive deep belief networks and Dempster–Shafer theory. Structural Health Monitoring, 19(1), 240-261. https://doi.org/10.1177/1475921719841690.
Author Biographies
Satya Arisena Hendrawan
Universitas Siber Indonesia
Information Systems Study Program, Universitas Siber Indonesia, South Jakarta City, Special Capital Region of Jakarta, Indonesia
Tristyanti Yusnitasari
Universitas Gunadarma
Information Systems Study Program, Faculty of Computer Science and Information Technology, Universitas Gunadarma, Depok City, West Java Province, Indonesia
Teddy Oswari
Universitas Gunadarma
Management Study Program, Faculty of Economics, Universitas Gunadarma, Depok City, West Java Province, Indonesia