Implementation of Edge Computing for Optimizing Sensor Data Collection in Smart Buildings

  • Authors

  • Affiliations

  • Published

  • Section Article

  • DOI https://doi.org/10.56347/jics.v4i2.369

  • Issue
Views icon

251

Views

Downloads icon

154

Downloads

Altmetrics icon

Altmetrics

Abstract

The development of the Internet of Things (IoT) has driven the implementation of smart buildings that rely on real-time sensor data collection and analysis. However, cloud computing-based systems often face problems of high latency and large network loads. This research implements an edge computing architecture to optimize sensor data collection in smart buildings. A prototype was built using edge nodes (Raspberry Pi) that process data from temperature, humidity, light, and motion sensors locally before sending it to the cloud. Test results show that edge computing can reduce latency by up to 45% and reduce data traffic to the cloud by 60%, while also improving the energy efficiency of sensor devices. Thus, edge computing has been proven to effectively improve the performance and efficiency of data collection systems in smart buildings

References

  1. Andri, A., Kusrini, & Agatstya, I. M. A. (2025). Optimalisasi smart home IoT melalui edge computing dan fuzzy Q-learning secara real-time. Buffer Informatika, 11(1), 7–15. https://doi.org/10.25134/buffer.v5i2
  2. Casado-Vara, R., Sittón-Candanedo, I., De la Prieta, F., Rodríguez, S., Calvo-Rolle, J. L., Venayagamoorthy, G. K., Vega, P., & Prieto, J. (2020). Edge computing and adaptive fault-tolerant tracking control algorithm for smart buildings: A case study. Cybernetics and Systems, 51(7), 685–697. https://doi.org/10.1080/01969722.2020.1798643
  3. Chiozzotto, M., & Ramírez, M. A. (2025). What is the best solution for smart buildings? A case study of fog, edge computing, and smart IoT devices. Applied Sciences, 15(7), 3805. https://doi.org/10.3390/app15073805
  4. Huang, J., Zhou, S., Li, G., & Shen, Q. (2025). Real-time monitoring and optimization methods for user-side energy management based on edge computing. Scientific Reports, 15(1), 1–18. https://doi.org/10.1038/s41598-025-07592-4
  5. Inibhunu, C., & Am, C. M. G. (2020). Edge computing with big data cloud architecture: A case study in smart building. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data 2020) (pp. 3387–3393). IEEE. https://doi.org/10.1109/BIGDATA50022.2020.9377918
  6. Johnston, S. J., & Cox, S. J. (2017). The Raspberry Pi: A technology disrupter and the enabler of dreams. Electronics, 6(3), 51. https://doi.org/10.3390/electronics6030051
  7. Joice, A., Tufaique, T., Tazeen, H., Igathinathane, C., Zhang, Z., Whippo, C., Hendrickson, J., & Archer, D. (2025). Applications of Raspberry Pi for precision agriculture—A systematic review. Agriculture, 15(3), 227. https://doi.org/10.3390/agriculture15030227
  8. Ju, R. Y., Lin, T. Y., Jian, J. H., & Chiang, J. S. (2023). Efficient convolutional neural networks on Raspberry Pi for image classification. Journal of Real-Time Image Processing, 20(2), 1–9. https://doi.org/10.1007/s11554-023-01271-1
  9. Laki, S., Stoyanov, R., Kis, D., Soulé, R., Vörös, P., & Zilberman, N. (2021). P4Pi. ACM SIGCOMM Computer Communication Review, 51(3), 17–21. https://doi.org/10.1145/3477482.3477486
  10. Latifah Ahmad, T., Puspa Murni, I., & Triya Nur Adibah, A. (2024). Pengaruh mesin cutting otomatis berbasis Internet of Things (IoT) terhadap efisiensi dan produktivitas pekerja pada mesin building tire di PT. ABC. Jurnal Instrumentasi dan Teknologi Informasi (JITI), 6(1), 121–128. https://jurnal.poltek-gt.ac.id/index.php/jiti/article/view/70
  11. Márquez-Sánchez, S., Alonso-Rollán, S., Nahom, H., Erbad, A., & Fernandez, J. H. (2025). Optimizing building energy management leveraging adaptive edge computing for enhanced efficiency and occupant well-being. In Lecture Notes in Networks and Systems (Vol. 1279, pp. 236–248). Springer. https://doi.org/10.1007/978-3-031-83117-1_23
  12. Márquez-Sánchez, S., Calvo-Gallego, J., Erbad, A., Ibrar, M., Fernandez, J. H., Houchati, M., & Corchado, J. M. (2023). Enhancing building energy management: Adaptive edge computing for optimized efficiency and inhabitant comfort. Electronics, 12(19), 4179. https://doi.org/10.3390/electronics12194179
  13. Prasetyo Adi, P. D., Mappadang, A., Armi, N., Santiko, A. B., Adiprabowo, T., Suprapto, Z., Zulkarnain, R., & Wirawan, A. (2023). Optimization and development of Raspberry Pi 4 Model B for the Internet of Things. In Proceedings of the IEEE 9th Information Technology International Seminar (ITIS 2023). IEEE. https://doi.org/10.1109/ITIS59651.2023.10420261
  14. Putra Jaya, R., Setyadi, T. A., Widhiati, G., & Ariyani, W. (2025). Analisis efisiensi energi pada bangunan hijau dengan teknologi terbaru. Jurnal Rekayasa Sipil dan Arsitektur, 1(1), 1–17. https://doi.org/10.51903/557W9H09
  15. Su, B., Li, X., Wang, S., & Cao, J. (2022). Distributed optimal control for HVAC systems adopting edge computing: Strategy, implementation, and experimental validation. IEEE Internet of Things Journal, 9(14), 11858–11867. https://doi.org/10.1109/JIOT.2021.3132033
  16. Suryadi, D., Octiva, C. S., Fajri, T. I., Nuryanto, U. W., Hakim, M. L., & Medan, M. B. P. (2024). Optimasi kinerja sistem IoT menggunakan teknik edge computing. Jurnal Minfo Polgan, 13(2), 1456–1461. https://doi.org/10.33395/jmp.v13i2.14102
  17. Verde Romero, D. A., Villalvazo Laureano, E., Jiménez Betancourt, R. O., & Navarro Álvarez, E. (2024). An open-source IoT edge-computing system for monitoring energy consumption in buildings. Results in Engineering, 21, 101875. https://doi.org/10.1016/j.rineng.2024.101875

Author Biographies

How to Cite

Fajri, T. I., Ningsih, L., Octiva, C. S., Hakim, M. L., & Hasma, N. A. (2025). Implementation of Edge Computing for Optimizing Sensor Data Collection in Smart Buildings. Journal Innovations Computer Science, 4(2), 345-352. https://doi.org/10.56347/jics.v4i2.369

Article Details

  • Volume: 4
  • Issue: 2
  • Pages: 345-352
  • Published:
  • Section: Article
  • Copyright: 2025
  • ISSN: 2961-970X

License

Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY 4.0). This means that users may share and adapt the articles published on this website in a reasonable manner, but they must give appropriate credit to the creator and indicate the changes they have made. Users must not apply additional restrictions, but must publish the work under the same license (CC-BY 4.0).

Similar Articles

Similar Articles

Discover other articles with topics similar to what you're currently reading. Find more references and expand your knowledge base.

Related Articles You May Be Interested In

More Similar Articles

Low-Cost DC Motor Design for Embedded Systems in Smart...

Arjun Patel

Vol. 4 No. 2 (2025): November
Web-Based Network Anomaly Detection System for Disaster...

Issenoro, Herlina Trisnawati, Sakius Octavianus Tarigan, Novianti M Faizah

Vol. 4 No. 1 (2025): May
Analisis Kematangan dan Adopsi Teknologi AI Video dalam...

Muhammad Agha Afkar

Vol. 3 No. 2 (2024): November
Sistem Informasi Pelayanan Izin Penelitian pada Badan...

Rudi Singkia Ramadhan, Elvitriana

Vol. 1 No. 2 (2022): November 2022
Most read articles by the same author(s)

Related Articles