Analisis Kematangan dan Adopsi Teknologi AI Video dalam Transformasi Digital Multi-Sektoral 2025-2030

Views icon

255

Views

Downloads icon

100

Downloads

Altmetrics icon

Altmetrics

Abstract

This research analyzes the development and adoption of AI Video technology through a comprehensive approach that evaluates technological maturity levels, sectoral adoption patterns, implementation challenges, and future growth projections. The analysis reveals that AI Video technology has entered a critical transformation phase from experimental to mainstream adoption with heterogeneous maturity levels across components. Object Detection has reached mature and deployment phases with widespread adoption in commercial applications, while Video Generation remains in transition from development to testing, and Edge Computing stays predominantly in research phase despite high disruptive potential. Adoption patterns show significant asymmetry across sectors, with entertainment achieving the highest adoption (90%), followed by retail (75-80%), healthcare and education (60-65%), and government showing the lowest (40-45%). Computational Cost emerges as the primary challenge (>87.5%), followed by Ethical Issues (85%) which demonstrates a significant gap between compliance requirements and current technical capabilities. Growth projections for 2025-2030 show optimism with Ethical AI projected to grow 55%, Real-time Generation 55%, and Edge Computing 50%. Convergence with other emerging technologies creates an integrated ecosystem but increases implementation complexity. Strategic recommendations include phased implementation based on technology maturity, computational infrastructure investment, comprehensive ethical framework development, and multi-stakeholder collaboration for sustainable and responsible development.

References

  1. Afkar, M. A., & Fathurrahmad. (2023). Transformasi bisnis dengan penerapan kecerdasan buatan (AI) pada sistem informasi dan teknologi digital: Tren utama tahun 2023. Journal Digital Technology Trend, 2(1), 1-12. https://doi.org/10.56347/jdtt.v2i1.146
  2. Afkar, M. A., & Khaira, A. (2024). Evaluasi desain pengalaman pengguna (UX) untuk meningkatkan interaksi di lingkungan metaverse. Design Journal, 2(1), 16-22. https://doi.org/10.58477/dj.v2i1.162
  3. Alfaris, L., Gustian, D., Setyorini, R., Romli, I., Putri, A. Y. P., Herjuna, S. A. S., Syamsiyah, N., Yuniansyah, Aziza, N., Muhammad, A. C., Umar, N., & Wali, M. (2022). Riset operasi. Indie Press.
  4. Bao, Y. (2022). Application of virtual reality technology in film and television animation based on artificial intelligence background. Scientific Programming, 2022, 2604408. https://doi.org/10.1155/2022/2604408
  5. Brata, A. S., Anhar, A., Lestari, W., Juliza, M., Rahmawati, S., & Nugroho, M. T. A. E. (2021). Average based length fuzzy time series data seasonal untuk prediksi volume impor migas Indonesia. Jurnal Ekonomi Manajemen Dan Sekretari, 6(1), 15-21. https://doi.org/10.35870/jemensri.v6i1.1764
  6. Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (pp. 77-91).
  7. Charles, F. (2023). AI-powered personalized mobile education for New Zealand students. International Journal Software Engineering and Computer Science (IJSECS), 3(1), 33-39. https://doi.org/10.35870/ijsecs.v3i1.1115
  8. Chesney, R., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. California Law Review, 107, 1753-1820.
  9. Coolsaet, D. (2024). The impact of technological advancements on higher education: A study of Generation Alpha's educational prospects. International Journal Software Engineering and Computer Science (IJSECS), 4(1), 58-67. https://doi.org/10.35870/ijsecs.v4i1.2147
  10. Deng, B. (2024). The application of AI video generation technology in virtual reality (VR) and augmented reality (AR). In 2024 International Conference on Artificial Intelligence, Deep Learning and Neural Networks (AIDLNN) (pp. 168-173). IEEE. https://doi.org/10.1109/AIDLNN65358.2024.00035
  11. Fazil, A. W., Hamidi, S. A., & Habibi, H. (2024). Evaluating the impact of emerging technologies on mobile user experience: The role of user-centered design in overcoming development challenges. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 1244-1252. https://doi.org/10.35870/ijsecs.v4i3.3167
  12. Ferdinand, M. N., & Chalimah, C. (2024). Pengaruh artificial intelligence (AI) berbasis ChatGPT terhadap kinerja pegawai pemerintahan dengan penerimaan teknologi sebagai variabel moderasi. INOBIS: Jurnal Inovasi Bisnis Dan Manajemen Indonesia, 7(2), 179-188. https://doi.org/10.31842/jurnalinobis.v7i2.316
  13. Fuad, M., Darusman, D., Kurniasari, F., & Agung Madepo, M. (2023). The effect of technological innovation on business sustainability based on Society 5.0 dimension: New decision making methods. International Journal of Management Science and Information Technology, 3(2), 226-236. https://doi.org/10.35870/ijmsit.v3i2.1493
  14. Gao, H. (2022). Online AI-guided video extraction for distance education with applications. Mathematical Problems in Engineering, 2022, 5028726. https://doi.org/10.1155/2022/5028726
  15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2672-2680.
  16. Hadi Saputro, S., Arninda, A., Firmansyah, F., & Munawir, M. (2023). Application of smart technology in marketing strategy development: An overview of the hotel industry in Bali. International Journal of Management Science and Information Technology, 3(2), 217-225. https://doi.org/10.35870/ijmsit.v3i2.1491
  17. Hakimi, M., Zarinkhail, M. S., & Musawi, S. Z. (2024). Exploring the fusion of enterprise architecture, blockchain, and AI in digital governance: A systematic review. International Journal Software Engineering and Computer Science (IJSECS), 4(2), 497-511. https://doi.org/10.35870/ijsecs.v4i2.2832
  18. Hendrawan, S. A., Yusnitasari, T., & Oswari, T. (2025). Market segmentation for local product marketing strategy using K-means and Dempster-Shafer algorithm implementation. Journal Innovations Computer Science, 4(1), 18-34. https://doi.org/10.56347/jics.v4i1.244
  19. Huang, Y., Lv, S., Tseng, K. K., Tseng, P. J., Xie, X., & Lin, R. F. Y. (2023). Recent advances in artificial intelligence for video production system. Enterprise Information Systems, 17(11). https://doi.org/10.1080/17517575.2023.2246188
  20. Husna, N. (2025). Pemanfaatan kecerdasan buatan dalam meningkatkan efisiensi diagnostik medis. Jurnal Sains Dan Teknologi Indonesia, 1(1), 1-4. https://doi.org/10.58477/sti.v1i1.282
  21. Issenoro, Trisnawati, H., Tarigan, S. O., & Faizah, N. M. (2025). Web-based network anomaly detection system for disaster recovery center: A SIEM implementation at the Indonesian Attorney General Training Agency. Journal Innovations Computer Science, 4(1), 1-17. https://doi.org/10.56347/jics.v4i1.217
  22. Jayanthiladevi, A., Raj, A. G., Narmadha, R., Chandran, S., Shaju, S., & Prasad, K. K. (2020). AI in video analysis, production and streaming delivery. Journal of Physics: Conference Series, 1712(1), 012014. https://doi.org/10.1088/1742-6596/1712/1/012014
  23. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P. L., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., ... & Yoon, D. H. (2017). In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (pp. 1-12).
  24. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).
  25. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  26. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
  27. Mahardhika, B. J., Putri, T. A., Rudiansyah, C., Fami, A., & Barus, I. R. (2024). Exploring the use of ChatGPT 3.5 in the development of routine website front end. International Journal Software Engineering and Computer Science (IJSECS), 4(2), 543-552. https://doi.org/10.35870/ijsecs.v4i2.2536
  28. Midoro, V., Chioccariello, A., Olimpo, G., Persico, D., Sarti, L., & Tavella, M. (1988). Interactive video and artificial intelligence: A convenient marriage. PLET: Programmed Learning & Educational Technology, 25(4), 299-309. https://doi.org/10.1080/1355800880250405
  29. Munawir, & Sulistyawati, U. S. (2024). Stock portfolio analysis with machine learning algorithmic approach for smart investment decisions. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 860-870. https://doi.org/10.35870/ijsecs.v4i3.2606
  30. Nurbaya, I. A., Emiliasari, R. N., Susilawati, S., Dewi, S. L., Rahmasari, S. M., Wali, M., & Widyastika, D. (2023). Inovasi pembelajaran. CV. Edupedia Publisher.
  31. Octiva, C. S., Suryadi, D., Judijanto, L., Laia, M., & Irwan, D. (2024). The application of artificial intelligence for anomaly detection in big data systems for decision-making. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 983-989. https://doi.org/10.35870/ijsecs.v4i3.3358
  32. Orak, C., & Turan, Z. (2024). Using artificial intelligence in digital video production: A systematic review study. Journal of Educational Technology and Online Learning, 7(3), 286-307. https://doi.org/10.31681/jetol.1459434
  33. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).
  34. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684-10695).
  35. Samudra, T. B., & Anggara, A. (2024). Implementation of Android-based salon booking application for customer service optimization. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 1056-1065. https://doi.org/10.35870/ijsecs.v4i3.3279
  36. Siregar, M. H., & Mulyana, D. I. (2024). Teknologi artificial intelligence (AI) vision swift dalam sistem pemantauan latihan bulu tangkis dengan algoritma optical flow. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(3), 3349-3361. https://doi.org/10.35870/jimik.v5i3.1027
  37. Supendi, Kumala, D., & Yulianti, M. L. (2024). Implications of deep learning for stock market forecasting. International Journal Software Engineering and Computer Science (IJSECS), 4(1), 68-80. https://doi.org/10.35870/ijsecs.v4i1.2281
  38. Sutarmin, Rohmanu, A., & Endang. (2024). Implementation of the Sugeno fuzzy method in a firefighting robot prototype with an all-wheel drive system. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 953-964. https://doi.org/10.35870/ijsecs.v4i3.3217
  39. Tahsin, M., & Azzahra, P. L. (2024). Penerapan kecerdasan buatan untuk meningkatkan pembelajaran desain logo dalam industri kreatif. Design Journal, 2(1), 23-32. https://doi.org/10.58477/dj.v2i1.163
  40. Takhsin, M., & Afkar, M. A. (2023). Assessment of practical experience in the development and testing of interactive mobile technology elements. Journal Mobile Technologies (JMS), 1(2), 53-61. https://doi.org/10.59431/jms.v1i2.290
  41. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., & Nießner, M. (2016). Face2Face: Real-time face capture and reenactment of RGB videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2387-2395).
  42. Utari, P., Anggreni, L. S., Alkhajar, E. N. S., Hermawati, T., Yudiningrum, F. R., Surwati, C. H. D., & Pramana. (2024). Artificial intelligence dalam etika penulisan karya ilmiah di kalangan mahasiswa Universitas Muhammadiyah Ponorogo. PASAI: Jurnal Pengabdian Kepada Masyarakat, 3(1), 13-16. https://doi.org/10.58477/pasai.v3i1.155
  43. Wali, M. (2022). Analisis dan interpretasi data riset berbasis digital. In Metode riset berbasis digital: Penelitian pasca pandemi (pp. 89-108).
  44. Wali, M., Efitra, S., Sudipa, I. G. I., Heryani, A., & Sepriano, M. (2023). Penerapan & implementasi big data di berbagai sektor (Pembangunan berkelanjutan era industri 4.0 dan society 5.0). PT. Sonpedia Publishing Indonesia.
  45. Wati, P. K., Wali, M., & Al Bahri, F. P. (2024). Penerapan teknologi barcode dalam sistem manajemen surat untuk peningkatan otentikasi dan efisiensi dokumen. Journal Digital Technology Trend, 3(1), 19-31. https://doi.org/10.56347/jdtt.v3i1.213
  46. Yu, T., Yang, W., Xu, J., & Pan, Y. (2024). Barriers to industry adoption of AI video generation tools: A study based on the perspectives of video production professionals in China. Applied Sciences, 14(13), 5770. https://doi.org/10.3390/app14135770
  47. Yusnidar, Y., Yudhakusuma, D., & Sari, F. (2023). Personalized marketing strategy in digital business using data mining approach. International Journal Software Engineering and Computer Science (IJSECS), 3(2), 137-143. https://doi.org/10.35870/ijsecs.v3i2.1515
  48. Zhang, Y. (2022). Development and application of artificial intelligence multimedia technology based on big data. Mobile Information Systems, 2022, 2073091. https://doi.org/10.1155/2022/2073091

Author Biographies

How to Cite

Afkar, M. A. (2024). Analisis Kematangan dan Adopsi Teknologi AI Video dalam Transformasi Digital Multi-Sektoral 2025-2030. Journal Innovations Computer Science, 3(2), 143-168. https://doi.org/10.56347/jics.v3i2.255

Article Details

  • Volume: 3
  • Issue: 2
  • Pages: 143-168
  • Published:
  • Section: Article
  • Copyright: 2024
  • ISSN: 2961-970X

License

Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY 4.0). This means that users may share and adapt the articles published on this website in a reasonable manner, but they must give appropriate credit to the creator and indicate the changes they have made. Users must not apply additional restrictions, but must publish the work under the same license (CC-BY 4.0).

Similar Articles

Similar Articles

Discover other articles with topics similar to what you're currently reading. Find more references and expand your knowledge base.

Related Articles You May Be Interested In

More Similar Articles

Implementation of Naïve Bayes for Public Sentiment...

Laila Nabilah, Kiki Setiawan

Vol. 4 No. 2 (2025): November
Sistem Penjualan Makanan Khas Aceh Berbasis Web di Toko...

Mawardinur

Vol. 3 No. 2 (2024): November
Analysis of the JAKLITERA Website Information System...

Syaharani Anandita Putri, Agus Tanti Rahayu, Arya Aditiya

Vol. 4 No. 2 (2025): November
Public Sentiment Analysis on Instagram Regarding the Film...

Putri Salfa Dhiyaa Azzizah, Mesra Betty Yel

Vol. 4 No. 2 (2025): November
Most read articles by the same author(s)

Related Articles