Fatigue Life Prediction Of Minibus Lower Suspension Arm Using Strain-Life Approach

Views icon

55

Views

Downloads icon

16

Downloads

Altmetrics icon

Altmetrics

Abstract

The lower suspension arm is a critical component in vehicle suspension systems that experiences complex dynamic loads during operation. This study aims to predict the fatigue life of minibus lower suspension arms using a strain-life approach considering road conditions in Southeast Asia. The finite element method was employed to analyze stress and strain distributions on the component, while fatigue failure criteria were applied to predict component life. Simulations were conducted using ANSYS software with Al-Si aluminum alloy material commonly used in suspension components. Analysis results showed that maximum stress occurred at the bushing joint area with a value of 245 MPa, and fatigue life was predicted to reach 1.2 × 10⁶ cycles for rough road conditions. Sensitivity analysis indicated that road roughness and joint geometry have significant influences on component fatigue life. This research contributes to design optimization and material selection to enhance lower suspension arm durability under tropical operating conditions.

References

  1. Ardjuna, B., Setiyana, B., & Haryanto, I. (2024). Optimasi desain swingarm tipe monoshock dua lengan dengan software SolidWorks. Jurnal Teknik Mesin, 12(2), 1–10.
  2. Bruder, T., Hanselka, H., Heim, R., Kaufmann, H., Kieninger, M., Nuffer, J., & Sonsino, C. M. (2014). Fatigue and structural durability of automotive components. In Road and off-road vehicle system dynamics handbook (p. 1708).
  3. Cameron, D. W., & Hoeppner, D. W. (1996). Fatigue properties in engineering. In Fatigue and fracture (pp. 15–26). ASM International.
  4. Dash, S. S., & Chen, D. (2023). A review on processing–microstructure–property relationships of Al–Si alloys: Recent advances in deformation behavior. Metals, 13(3), 609. https://doi.org/10.3390/met13030609
  5. Heim, R. (2020). Operating life analysis. In Structural durability: Methods and concepts: Enabling cost and mass efficient products (pp. 13–66). Springer International Publishing. https://doi.org/10.1007/978-3-030-45108-7_2
  6. Kahoul, H., Belhour, S., Bellaouar, A., & Dron, J. P. (2019). Fatigue life prediction of upper arm suspension using strain-life approach. Journal of Engineering, Design and Technology, 17(1), 25–40. https://doi.org/10.1108/JEDT-03-2018-0054
  7. Kashyzadeh, K. R. (2016). Mass reduction for arm suspension of vehicle by using optimal design parameters. International Journal of Vehicle Systems Modelling and Testing, 11(4), 271–284. https://doi.org/10.1504/IJVSMT.2016.079845
  8. Kashyzadeh, K. R., Ostad-Ahmad-Ghorabi, M. J., & Arghavan, A. (2015). Fatigue life prediction of package of suspension automotive under random vibration based on road roughness. Mediterranean Journal of Modeling and Simulation, 4(1), 37–50.
  9. Kim, Y. S., & Kim, J. G. (2017). Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component. Metals and Materials International, 23(1), 98–105. https://doi.org/10.1007/s12540-016-6050-2
  10. Liu, Y., Gao, X., Huang, H., & Tan, J. (2025). Finite element analysis and optimization of steering axle structure for new energy vehicles. Symmetry, 17(11), 1882. https://doi.org/10.3390/sym17111882
  11. Murtadlo, H. A. (2016). Analisis kekuatan carbon fiber tube A-arm Sapuangin Speed dengan metode elemen hingga (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
  12. Oehlers, D. J., Ghosh, A., & Wahab, M. (1995). Residual strength approach to fatigue design and analysis. Journal of Structural Engineering, 121(9), 1271–1279. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:9(1271)
  13. Ogunoiki, A. O. (2015). Artificial road input data generation tool for vehicle durability assessment using artificial intelligence (Doctoral dissertation, University of Birmingham).
  14. Pachapuri, M. S. A., Lingannavar, R. G., Kelageri, N. K., & Phadate, K. K. (2021). Design and analysis of lower control arm of suspension system. Materials Today: Proceedings, 47, 2949–2956. https://doi.org/10.1016/j.matpr.2021.05.151
  15. Pramono, A. S., & Wikarta, A. (2006). Simulasi pengujian lower front arm dengan metode elemen hingga.
  16. Putra, T. E., & Ikbal, M. (2020). Effect of road surface contour to the fatigue life of a coil spring based on strain-life approach. In IOP Conference Series: Materials Science and Engineering (Vol. 739, No. 1, Article 012014). IOP Publishing. https://doi.org/10.1088/1757-899X/739/1/012014
  17. Rahman, M. M., Noor, M. M., Kadirgama, K., Maleque, M. A., & Bakar, R. A. (2011). Modeling, analysis and fatigue life prediction of lower suspension arm. Advanced Materials Research, 264, 1557–1562. https://doi.org/10.4028/www.scientific.net/AMR.264.1557
  18. Saoudi, A., Bouazara, M., & Marceau, D. (2011). Fatigue failure study of the lower suspension vehicle arm using a multiaxial criterion of the strain energy density. Strojniški vestnik – Journal of Mechanical Engineering, 57(4), 345–356. https://doi.org/10.5545/sv-jme.2010.186
  19. Sener, A. S. (2016). Steering wheel tie rod fatigue life determination according to Turkish mission profiles. International Journal of Engineering Technologies (IJET), 2(2), 56–63.
  20. Wahyudin, Husaini, & Putra, T. E. (2021). Stress analysis on an automotive lower arm steered on the straight and turning roads. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering (ICECME 2020) (pp. 271–276). Springer Singapore. https://doi.org/10.1007/978-981-16-0731-4_25
  21. Wijayanto, M. R., & Guntur, H. L. (2024). Desain dan analisis kekuatan struktur suspensi all wheel drive vehicle. Jurnal Teknik ITS, 13(2), E136–E141. https://doi.org/10.12962/j23373539.v13i2.12345
  22. Zoroufi, M. (2004). Manufacturing process effects on fatigue design and optimization of automotive components: An analytical and experimental study (Doctoral dissertation, The University of Toledo).
  23. Zoroufi, M., & Fatemi, A. (2004). Fatigue life comparisons of competing manufacturing processes: A study of steering knuckle (SAE Technical Paper No. 2004-01-0628). SAE International. https://doi.org/10.4271/2004-01-0628

Author Biographies

How to Cite

Anh, N. T. M. ., & Đức, P. V. . (2025). Fatigue Life Prediction Of Minibus Lower Suspension Arm Using Strain-Life Approach. Journal of Engineering and Science, 4(2), 103-112. https://doi.org/10.56347/jes.v4i2.276

Article Details

  • Volume: 4
  • Issue: 2
  • Pages: 103-112
  • Published:
  • Section: Articles
  • Copyright: 2025
  • ISSN: 2828-805X

License

Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY 4.0). This means that users may share and adapt the articles published on this website in a reasonable manner, but they must give appropriate credit to the creator and indicate the changes they have made. Users must not apply additional restrictions, but must publish the work under the same license (CC-BY 4.0).

Similar Articles

Similar Articles

Discover other articles with topics similar to what you're currently reading. Find more references and expand your knowledge base.

Related Articles You May Be Interested In

More Similar Articles

Optimalisasi Performa Sistem Tegangan dengan Pemasangan...

Mahdi Syukri, Suriadi, Ira Devi Sara, Ramdhan Halid Siregar, Muhibbuddin, Masri

Vol. 2 No. 1 (2023): January-June 2023
Design and Fabrication of a Hydraulic Transmission Jack...

Nguyen Van Anh, Hoang Thi Mai

Vol. 4 No. 2 (2025): December
Penelitian Efek Penggunaan Grid Tie Inverter pada Sistem...

Suhaeri, Masri, Azhar, Saifuddin

Vol. 2 No. 1 (2023): January-June 2023
Kegagalan Permukaan Kontak Rail dan Wheel pada Overhead...

Azhar, Ajinar, Zainuddin

Vol. 1 No. 1 (2022): January-June 2022
Most read articles by the same author(s)

Related Articles